January 17, 2014

TO: Whom It May Concern

SUBJECT: RoHS – Copper Alloyed Products

Galvan Industries recognizes that European Union directive 2002/95/EC (RoHS) restricts the use of certain hazardous substances in electrical and electronic equipment. We understand this directive to include the following limitations:

- Lead (Pb) ** 0.1%
- Cadmium (Cd) 0.01%
- Hexavalent Chromium (Cr) VI 0.1%
- Mercury (Hg) 0.1%
- Polybrominated Biphenyls (PBB) 0.1%
- Polybrominated Diphenyl Ethers (PBDE) 0.1%
- Deca-Bromo Diphenyl Ether in Polymeric Applications 0.1%

** Maximum of 0.35% lead permitted in steel; 0.4% in aluminum; 4.0% in copper (ie: brass) as exempted in the directive.

Galvan does not intentionally add any of the restricted substances to our products. Supplemental information specific to each substance follows:

Lead and its compounds
Lead is added intentionally only to specific leaded brass alloys which are exempt under the directive. All other alloys do not have intentional additions of lead; however, it may exist in our raw materials in trace levels. These alloys are analyzed for lead concentration. ASTM/CDA specifications and internal limits for the maximum allowable lead content are less than the limits stated above.

Cadmium and its compounds
Cadmium is not intentionally added to any of our products. It may exist in our raw materials in trace levels. We do analyze for cadmium in our copper & brass alloys and have put in place controls to ensure that the concentration does not exceed the limits defined above.

Hexavalent Chromium
The hexavalent oxidation state of chromium does not exist as part of a metal alloy.

Mercury and its compounds
The very low boiling point of mercury precludes its presence in our product due to the high melting point attained for casting.

Polybrominated biphenyls and Polybrominated diphenyl ethers (PBE and PBDE)
These chemicals, used as flame retardants in plastics, are not used on or in our products.

Roger J Montambo-PE, VP

www.galvanelectrical.com rmontambo@galvanelectrical.com